Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1303089, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348040

RESUMO

Guanylate binding proteins (GBPs) are an evolutionarily ancient family of proteins that are widely distributed among eukaryotes. They belong to the dynamin superfamily of GTPases, and their expression can be partially induced by interferons (IFNs). GBPs are involved in the cell-autonomous innate immune response against bacterial, parasitic and viral infections. Evolutionary studies have shown that GBPs exhibit a pattern of gene gain and loss events, indicative for the birth-and-death model of evolution. Most species harbor large GBP gene clusters that encode multiple paralogs. Previous functional and in-depth evolutionary studies have mainly focused on murine and human GBPs. Since rabbits are another important model system for studying human diseases, we focus here on lagomorphs to broaden our understanding of the multifunctional GBP protein family by conducting evolutionary analyses and performing a molecular and functional characterization of rabbit GBPs. We observed that lagomorphs lack GBP3, 6 and 7. Furthermore, Leporidae experienced a loss of GBP2, a unique duplication of GBP5 and a massive expansion of GBP4. Gene expression analysis by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and transcriptome data revealed that leporid GBP expression varied across tissues. Overexpressed rabbit GBPs localized either uniformly and/or discretely to the cytoplasm and/or to the nucleus. Oryctolagus cuniculus (oc)GBP5L1 and rarely ocGBP5L2 were an exception, colocalizing with the trans-Golgi network (TGN). In addition, four ocGBPs were IFN-inducible and only ocGBP5L2 inhibited furin activity. In conclusion, from an evolutionary perspective, lagomorph GBPs experienced multiple gain and loss events, and the molecular and functional characteristics of ocGBP suggest a role in innate immunity.


Assuntos
Lagomorpha , Animais , Coelhos , Humanos , Camundongos , Lagomorpha/metabolismo , Proteínas de Transporte , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Imunidade Inata/genética , Interferons/metabolismo
2.
Front Microbiol ; 14: 1213685, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37577422

RESUMO

Interferon-inducible transmembrane proteins (IFITMs) are a family of transmembrane proteins. The subgroup of immunity-related (IR-)IFITMs is involved in adaptive and innate immune responses, being especially active against viruses. Here, we suggest that IFITMs should be classified as (1) a canonical IFITM gene cluster, which is located on the same chromosome, and (2) IFITM retrogenes, with a random and unique location at different positions within the genome. Phylogenetic analyses of the canonical cluster revealed the existence of three novel groups of primate IFITMs (pIFITM) in the IR-IFITM clade: the prosimian pIFITMs(pro), the new world monkey pIFITMs(nwm) and the old world monkey pIFITMs(owm). Therefore, we propose a new nomenclature: IR-pIFITM1, IR-pIFITM2, IR-pIFITM3, IR-pIFITMnwm, IR-pIFITMowm, and IR-pIFITMpro. We observed divergent evolution for pIFITM5 and pIFITM10, and evidence for concerted evolution and a mechanism of birth-and-death evolution model for the IR-pIFITMs. In contrast, the IFITMs scattered throughout the genomes possessed features of retrogenes retrotransposed by class 1 transposable elements. The origin of the IFITM retrogenes correspond to more recent events. We hypothesize that the transcript of a canonical IFITM3 has been constantly retrotransposed using class 1 transposable elements resulting in the IFITM retro(pseudo)genes. The unique pattern of each species has most likely been caused by constant pseudogenization and loss of the retro(pseudo)genes. This suggests a third mechanism of evolution for the IR-IFITMs in primates, similar to the birth-and-death model of evolution, but via a transposable element mechanism, which resulted in retro(pseudo)genes.

3.
Med Microbiol Immunol ; 212(5): 323-337, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37561225

RESUMO

Since late 2021, the variant landscape of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been dominated by the variant of concern (VoC) Omicron and its sublineages. We and others have shown that the detection of Omicron-BA.1 and -BA.2-positive respiratory specimens by rapid antigen tests (RATs) is impaired compared to Delta VoC-containing samples. Here, in a single-center retrospective laboratory study, we evaluated the performance of ten most commonly used RATs for the detection of Omicron-BA.4 and -BA.5 infections. We used 171 respiratory swab specimens from SARS-CoV-2 RNA-positive patients, of which 71 were classified as BA.4 and 100 as BA.5. All swabs were collected between July and September 2022. 50 SARS-CoV-2 PCR-negative samples from healthy individuals, collected in October 2022, showed high specificity in 9 out of 10 RATs. When assessing analytical sensitivity using clinical specimens, the 50% limit of detection (LoD50) ranged from 7.6 × 104 to 3.3 × 106 RNA copies subjected to the RATs for BA.4 compared to 6.8 × 104 to 3.0 × 106 for BA.5. Overall, intra-assay differences for the detection of these two Omicron subvariants were not significant for both respiratory swabs and tissue culture-expanded virus isolates. In contrast, marked heterogeneity was observed among the ten RATs: to be positive in these point-of-care tests, up to 443-fold (BA.4) and up to 56-fold (BA.5) higher viral loads were required for the worst performing RAT compared to the best performing RAT. True-positive rates for Omicron-BA.4- or -BA.5-containing specimens in the highest viral load category (Ct values < 25) ranged from 94.3 to 34.3%, dropping to 25.6 to 0% for samples with intermediate Ct values (25-30). We conclude that the high heterogeneity in the performance of commonly used RATs remains a challenge for the general public to obtain reliable results in the evolving Omicron subvariant-driven pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , RNA Viral , Estudos Retrospectivos , COVID-19/diagnóstico , Pandemias
4.
Med Microbiol Immunol ; 212(5): 307-322, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37561226

RESUMO

Diagnostic tests for direct pathogen detection have been instrumental to contain the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic. Automated, quantitative, laboratory-based nucleocapsid antigen (Ag) tests for SARS-CoV-2 have been launched alongside nucleic acid-based test systems and point-of-care (POC) lateral-flow Ag tests. Here, we evaluated four commercial Ag tests on automated platforms for the detection of different sublineages of the SARS-CoV-2 Omicron variant of concern (VoC) (B.1.1.529) in comparison with "non-Omicron" VoCs. A total of 203 Omicron PCR-positive respiratory swabs (53 BA.1, 48 BA.2, 23 BQ.1, 39 XBB.1.5 and 40 other subvariants) from the period February to March 2022 and from March 2023 were examined. In addition, tissue culture-expanded clinical isolates of Delta (B.1.617.2), Omicron-BA.1, -BF.7, -BN.1 and -BQ.1 were studied. These results were compared to previously reported data from 107 clinical "non-Omicron" samples from the end of the second pandemic wave (February to March 2021) as well as cell culture-derived samples of wildtype (wt) EU-1 (B.1.177), Alpha VoC (B.1.1.7) and Beta VoC (B.1.351)). All four commercial Ag tests were able to detect at least 90.9% of Omicron-containing samples with high viral loads (Ct < 25). The rates of true-positive test results for BA.1/BA.2-positive samples with intermediate viral loads (Ct 25-30) ranged between 6.7% and 100.0%, while they dropped to 0 to 15.4% for samples with low Ct values (> 30). This heterogeneity was reflected also by the tests' 50%-limit of detection (LoD50) values ranging from 44,444 to 1,866,900 Geq/ml. Respiratory samples containing Omicron-BQ.1/XBB.1.5 or other Omicron subvariants that emerged in 2023 were detected with enormous heterogeneity (0 to 100%) for the intermediate and low viral load ranges with LoD50 values between 23,019 and 1,152,048 Geq/ml. In contrast, detection of "non-Omicron" samples was more sensitive, scoring positive in 35 to 100% for the intermediate and 1.3 to 32.9% of cases for the low viral loads, respectively, corresponding to LoD50 values ranging from 6181 to 749,792 Geq/ml. All four assays detected cell culture-expanded VoCs Alpha, Beta, Delta and Omicron subvariants carrying up to six amino acid mutations in the nucleocapsid protein with sensitivities comparable to the non-VoC EU-1. Overall, automated quantitative SARS-CoV-2 Ag assays are not more sensitive than standard rapid antigen tests used in POC settings and show a high heterogeneity in performance for VoC recognition. The best of these automated Ag tests may have the potential to complement nucleic acid-based assays for SARS-CoV-2 diagnostics in settings not primarily focused on the protection of vulnerable groups. In light of the constant emergence of new Omicron subvariants and recombinants, most recently the XBB lineage, these tests' performance must be regularly re-evaluated, especially when new VoCs carry mutations in the nucleocapsid protein or immunological and clinical parameters change.


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo
5.
J Virol ; 97(6): e0029423, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37272794

RESUMO

Serpins are a superfamily of proteins that regulate a variety of physiological processes by irreversibly inhibiting the enzymatic activity of different serine proteases. For example, Serpin Family B Member 8 (Serpin B8, also known as PI8 and CAP2) binds to and inhibits the proprotein convertase furin. Like many other viral pathogens, human immunodeficiency virus type 1 (HIV-1) exploits furin for the proteolytic activation of its envelope glycoprotein (Env). Since the furin inhibitor Serpin B8 is expressed in primary target cells of HIV-1 and induced under inflammatory conditions, we hypothesized that it might interfere with HIV-1 Env maturation and decrease infectivity of newly produced virions. Indeed, recombinant Serpin B8 reduced furin-mediated cleavage of an HIV-1 Env reporter substrate in vitro. However, Serpin B8 did not affect Env maturation or reduce HIV-1 particle infectivity when expressed in HIV-1-producing cells. Immunofluorescence imaging, dimerization assays and in silico sequence analyses revealed that Serpin B8 failed to inhibit intracellular furin since both proteins localized to different subcellular compartments. We therefore aimed at rendering Serpin B8 active against HIV-1 by relocalizing it to furin-containing secretory compartments. Indeed, the addition of a heterologous signal peptide conferred potent anti-HIV-1 activity to Serpin B8 and significantly decreased infectivity of newly produced viral particles. Thus, our findings demonstrate that subcellular relocalization of a cellular protease inhibitor can result in efficient inhibition of infectious HIV-1 production. IMPORTANCE Many cellular proteases serve as dependency factors during viral infection and are hijacked by viruses for the maturation of their own (glyco)proteins. Consequently, inhibition of these cellular proteases may represent a means to inhibit the spread of viral infection. For example, several studies have investigated the serine protease furin as a potential therapeutic target since this protease cleaves and activates several viral envelope proteins, including HIV-1 Env. Besides the development of small molecule inhibitors, cell-intrinsic protease inhibitors may also be exploited to advance current antiviral treatment approaches. Here, we show that Serpin B8, an endogenous furin inhibitor, can inhibit HIV-1 Env maturation and efficiently reduce infectious HIV-1 production when rerouted to the secretory pathway. The results of our study not only provide important insights into the biology of Serpins, but also show how protein engineering of an endogenous furin inhibitor can render it active against HIV-1.


Assuntos
Furina , HIV-1 , Serpinas , Humanos , Linhagem Celular , Produtos do Gene env do Vírus da Imunodeficiência Humana , Furina/metabolismo , HIV-1/fisiologia , Serpinas/química , Serpinas/metabolismo , Serpinas/farmacologia , Replicação Viral
6.
Anal Biochem ; 670: 115153, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37037311

RESUMO

Different protein purification methods exist. Yet, they need to be adapted for specific downstream applications to maintain functional integrity of the recombinant proteins. This study established a purification protocol for lentiviral Vpx (viral protein X) and test its ability to degrade sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1) ex vivo in resting CD4+ T cells. For this purpose, we cloned a novel eukaryotic expression plasmid for Vpx including C-terminal 10x His- and HA-tags and confirmed that those tags did not alter the ability to degrade SAMHD1. We optimized purification conditions for Vpx produced in HEK293T cells with CHAPS as detergent and Co-NTA resins yielding the highest solubility and protein amounts. Size exclusion chromatography (SEC) further enhanced the purity of recombinant Vpx proteins. Importantly, nucleofection of resting CD4+ T cells demonstrated that purified recombinant Vpx protein efficiently degraded SAMHD1 in a proteasome-dependent manner. In conclusion, this protocol is suitable for functional downstream applications of recombinant Vpx and might be transferrable to other recombinant proteins with similar functions/properties as lentiviral Vpx.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Linfócitos T , Humanos , Proteína 1 com Domínio SAM e Domínio HD/genética , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Células HEK293 , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Linfócitos T CD4-Positivos , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo
7.
Med Microbiol Immunol ; 212(2): 123-124, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36991263

Assuntos
Viroses , Humanos
8.
Med Microbiol Immunol ; 212(2): 141-152, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35416510

RESUMO

Guanylate binding proteins (GBPs) represent an evolutionary ancient protein family widely distributed among eukaryotes. They are interferon (IFN)-inducible guanosine triphosphatases that belong to the dynamin superfamily. GBPs are known to have a major role in the cell-autonomous innate immune response against bacterial, parasitic and viral infections and are also involved in inflammasome activation. Evolutionary studies depicted that GBPs present a pattern of gain and loss of genes in each family with several genes pseudogenized and some genes more divergent, indicative for the birth-and-death evolution process. Most species harbor large GBP gene clusters encoding multiple paralogs. Previous functional studies mainly focused on mouse and human GBPs, but more data are becoming available, broadening the understanding of this multifunctional protein family. In this review, we will provide new insights and give a broad overview about GBP evolution, conservation and their roles in all studied species, including plants, invertebrates and vertebrates, revealing how far the described features of GBPs can be transferred to other species.


Assuntos
Proteínas de Transporte , Proteínas de Ligação ao GTP , Humanos , Animais , Camundongos , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Imunidade Inata , Interferons/metabolismo , Inflamassomos/metabolismo
9.
Med Microbiol Immunol ; 212(1): 13-23, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36370197

RESUMO

During 2022, the COVID-19 pandemic has been dominated by the variant of concern (VoC) Omicron (B.1.1.529) and its rapidly emerging subvariants, including Omicron-BA.1 and -BA.2. Rapid antigen tests (RATs) are part of national testing strategies to identify SARS-CoV-2 infections on site in a community setting or to support layman's diagnostics at home. We and others have recently demonstrated an impaired RAT detection of infections caused by Omicron-BA.1 compared to Delta. Here, we evaluated the performance of five SARS-CoV-2 RATs in a single-centre laboratory study examining a total of 140 SARS-CoV-2 PCR-positive respiratory swab samples, 70 Omicron-BA.1 and 70 Omicron-BA.2, as well as 52 SARS-CoV-2 PCR-negative swabs collected from March 8th until April 10th, 2022. One test did not meet minimal criteria for specificity. In an assessment of the analytical sensitivity in clinical specimen, the 50% limit of detection (LoD50) ranged from 4.2 × 104 to 9.2 × 105 RNA copies subjected to the RAT for Omicron-BA.1 compared to 1.3 × 105 to 1.5 × 106 for Omicron-BA.2. Overall, intra-assay differences for the detection of Omicron-BA.1-containing and Omicron-BA.2-containing samples were non-significant, while a marked overall heterogeneity among the five RATs was observed. To score positive in these point-of-care tests, up to 22-fold (LoD50) or 68-fold (LoD95) higher viral loads were required for the worst performing compared to the best performing RAT. The rates of true-positive test results for these Omicron subvariant-containing samples in the highest viral load category (Ct values < 25) ranged between 44.7 and 91.1%, while they dropped to 8.7 to 22.7% for samples with intermediate Ct values (25-30). In light of recent reports on the emergence of two novel Omicron-BA.2 subvariants, Omicron-BA.2.75 and BJ.1, awareness must be increased for the overall reduced detection rate and marked differences in RAT performance for these Omicron subvariants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Pandemias , Testes Imediatos , Reação em Cadeia da Polimerase
10.
Cells ; 11(19)2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36230931

RESUMO

Latent reservoirs in human-immunodeficiency-virus-1 (HIV-1)-infected individuals represent a major obstacle in finding a cure for HIV-1. Hematopoietic stem and progenitor cells (HSPCs) have been described as potential HIV-1 targets, but their roles as HIV-1 reservoirs remain controversial. Here we provide additional evidence for the susceptibility of several distinct HSPC subpopulations to HIV-1 infection in vitro and in vivo. In vitro infection experiments of HSPCs were performed with different HIV-1 Env-pseudotyped lentiviral particles and with replication-competent HIV-1. Low-level infection/transduction of HSPCs, including hematopoietic stem cells (HSCs) and multipotent progenitors (MPP), was observed, preferentially via CXCR4, but also via CCR5-mediated entry. Multi-lineage colony formation in methylcellulose assays and repetitive replating of transduced cells provided functional proof of susceptibility of primitive HSPCs to HIV-1 infection. Further, the access to bone marrow samples from HIV-positive individuals facilitated the detection of HIV-1 gag cDNA copies in CD34+ cells from eight (out of eleven) individuals, with at least six of them infected with CCR5-tropic HIV-1 strains. In summary, our data confirm that primitive HSPC subpopulations are susceptible to CXCR4- and CCR5-mediated HIV-1 infection in vitro and in vivo, which qualifies these cells to contribute to the HIV-1 reservoir in patients.


Assuntos
Infecções por HIV , HIV-1 , DNA Complementar , HIV-1/fisiologia , Células-Tronco Hematopoéticas , Humanos
11.
Front Immunol ; 13: 752186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222365

RESUMO

Guanylate binding proteins (GBPs) are paramount in the host immunity by providing defense against invading pathogens. Multigene families related to the immune system usually show that the duplicated genes can either undergo deletion, gain new functions, or become non-functional. Here, we show that in muroids, the Gbp genes followed an unusual pattern of gain and loss of genes. Muroids present a high diversity and plasticity regarding Gbp synteny, with most species presenting two Gbp gene clusters. The phylogenetic analyses revealed seven different Gbps groups. Three of them clustered with GBP2, GBP5 and GBP6 of primates. Four new Gbp genes that appear to be exclusive to muroids were identified as Gbpa, b, c and d. A duplication event occurred in the Gbpa group in the common ancestor of Muridae and Cricetidae (~20 Mya), but both copies were deleted from the genome of Mus musculus, M. caroli and Cricetulus griseus. The Gbpb gene emerged in the ancestor of Muridae and Cricetidae and evolved independently originating Gbpb1 in Muridae, Gbpb2 and Gbpb3 in Cricetidae. Since Gbpc appears only in three species, we hypothesize that it was present in the common ancestor and deleted from most muroid genomes. The second Gbp gene cluster, Gbp6, is widespread across all muroids, indicating that this cluster emerged before the Muridae and Cricetidae radiation. An expansion of Gbp6 occurred in M. musculus and M. caroli probably to compensate the loss of Gbpa and b. Gbpd is divided in three groups and is present in most muroids suggesting that a duplication event occurred in the common ancestor of Muridae and Cricetidae. However, in Grammomys surdaster and Mus caroli, Gbpd2 is absent, and in Arvicanthis niloticus, Gbpd1 appears to have been deleted. Our results further demonstrated that primate GBP1, GBP3 and GBP7 are absent from the genome of muroids and showed that the Gbp gene annotations in muroids were incorrect. We propose a new classification based on the phylogenetic analyses and the divergence between the groups. Extrapolations to humans based on functional studies of muroid Gbps should be re-evaluated. The evolutionary analyses of muroid Gbp genes provided new insights about the evolution and function of these genes.


Assuntos
Arvicolinae , Proteínas de Transporte , Animais , Murinae , Filogenia , Primatas
12.
Med Microbiol Immunol ; 211(2-3): 105-117, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35187580

RESUMO

Since autumn 2020, rapid antigen tests (RATs) have been implemented in several countries as an important pillar of the national testing strategy to rapidly screen for infections on site during the SARS-CoV-2 pandemic. The current surge in infection rates around the globe is driven by the variant of concern (VoC) omicron (B.1.1.529). Here, we evaluated the performance of nine SARS-CoV-2 RATs in a single-centre laboratory study. We examined a total of 115 SARS-CoV-2 PCR-negative and 166 SARS-CoV-2 PCR-positive respiratory swab samples (101 omicron, 65 delta (B.1.617.2)) collected from October 2021 until January 2022 as well as cell culture-expanded clinical isolates of both VoCs. In an assessment of the analytical sensitivity in clinical specimen, the 50% limit of detection (LoD50) ranged from 1.77 × 106 to 7.03 × 107 RNA copies subjected to the RAT for omicron compared to 1.32 × 105 to 2.05 × 106 for delta. To score positive in these point-of-care tests, up to 10-fold (LoD50) or 101-fold (LoD95) higher virus loads were required for omicron- compared to delta-containing samples. The rates of true positive test results for omicron samples in the highest virus load category (Ct values < 25) ranged between 31.4 and 77.8%, while they dropped to 0-8.3% for samples with intermediate Ct values (25-30). Of note, testing of expanded virus stocks suggested a comparable RAT sensitivity of both VoCs, questioning the predictive value of this type of in vitro-studies for clinical performance. Given their importance for national test strategies in the current omicron wave, awareness must be increased for the reduced detection rate of omicron infections by RATs and a short list of suitable RATs that fulfill the minimal requirements of performance should be rapidly disclosed.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Pandemias
13.
J Mol Biol ; 434(6): 167421, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34954236

RESUMO

Human SERINC5 (SER5) protein is a recently described restriction factor against human immunodeficiency virus-1 (HIV-1), which is antagonized by HIV-1 Nef protein. Other retroviral accessory proteins such as the glycosylated Gag (glycoGag) from the murine leukemia virus (MLV) can also antagonize SER5. In addition, some viruses escape SER5 restriction by expressing a SER5-insensitive envelope (Env) glycoprotein. Here, we studied the activity of human and feline SER5 on HIV-1 and on the two pathogenic retroviruses in cats, feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV). HIV-1 in absence of Nef is restricted by SER5 from domestic cats and protected by its Nef protein. The sensitivity of feline retroviruses FIV and FeLV to human and feline SER5 is considerably different: FIV is sensitive to feline and human SER5 and lacks an obvious mechanism to counteract SER5 activity, while FeLV is relatively resistant to SER5 inhibition. We speculated that similar to MLV, FeLV-A or FeLV-B express glycoGag proteins and investigated their function against human and feline SER5 in wild type and envelope deficient virus variants. We found that the endogenous FeLV recombinant virus, FeLV-B but not wild type exogenous FeLV-A envelope mediates a strong resistance against human and feline SER5. GlycoGag has an additional but moderate role to enhance viral infectivity in the presence of SER5 that seems to be dependent on the FeLV envelope. These findings may explain, why in vivo FeLV-B has a selective advantage and causes higher FeLV levels in infected cats compared to infections of FeLV-A only.


Assuntos
HIV-1 , Vírus da Imunodeficiência Felina , Vírus da Leucemia Felina , Proteínas de Membrana , Proteínas do Envelope Viral , Produtos do Gene nef do Vírus da Imunodeficiência Humana , Animais , Gatos , Glicosilação , HIV-1/fisiologia , Humanos , Vírus da Imunodeficiência Felina/fisiologia , Vírus da Leucemia Felina/fisiologia , Proteínas de Membrana/fisiologia , Proteínas do Envelope Viral/fisiologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/fisiologia
14.
J Exp Clin Cancer Res ; 40(1): 317, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34641952

RESUMO

BACKGROUND: SAMHD1 mediates resistance to anti-cancer nucleoside analogues, including cytarabine, decitabine, and nelarabine that are commonly used for the treatment of leukaemia, through cleavage of their triphosphorylated forms. Hence, SAMHD1 inhibitors are promising candidates for the sensitisation of leukaemia cells to nucleoside analogue-based therapy. Here, we investigated the effects of the cytosine analogue CNDAC, which has been proposed to be a SAMHD1 inhibitor, in the context of SAMHD1. METHODS: CNDAC was tested in 13 acute myeloid leukaemia (AML) cell lines, in 26 acute lymphoblastic leukaemia (ALL) cell lines, ten AML sublines adapted to various antileukaemic drugs, 24 single cell-derived clonal AML sublines, and primary leukaemic blasts from 24 AML patients. Moreover, 24 CNDAC-resistant sublines of the AML cell lines HL-60 and PL-21 were established. The SAMHD1 gene was disrupted using CRISPR/Cas9 and SAMHD1 depleted using RNAi, and the viral Vpx protein. Forced DCK expression was achieved by lentiviral transduction. SAMHD1 promoter methylation was determined by PCR after treatment of genomic DNA with the methylation-sensitive HpaII endonuclease. Nucleoside (analogue) triphosphate levels were determined by LC-MS/MS. CNDAC interaction with SAMHD1 was analysed by an enzymatic assay and by crystallisation. RESULTS: Although the cytosine analogue CNDAC was anticipated to inhibit SAMHD1, SAMHD1 mediated intrinsic CNDAC resistance in leukaemia cells. Accordingly, SAMHD1 depletion increased CNDAC triphosphate (CNDAC-TP) levels and CNDAC toxicity. Enzymatic assays and crystallisation studies confirmed CNDAC-TP to be a SAMHD1 substrate. In 24 CNDAC-adapted acute myeloid leukaemia (AML) sublines, resistance was driven by DCK (catalyses initial nucleoside phosphorylation) loss. CNDAC-adapted sublines displayed cross-resistance only to other DCK substrates (e.g. cytarabine, decitabine). Cell lines adapted to drugs not affected by DCK or SAMHD1 remained CNDAC sensitive. In cytarabine-adapted AML cells, increased SAMHD1 and reduced DCK levels contributed to cytarabine and CNDAC resistance. CONCLUSION: Intrinsic and acquired resistance to CNDAC and related nucleoside analogues are driven by different mechanisms. The lack of cross-resistance between SAMHD1/ DCK substrates and non-substrates provides scope for next-line therapies after treatment failure.


Assuntos
Leucemia Mieloide Aguda/tratamento farmacológico , Nucleosídeos/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos
15.
Med Microbiol Immunol ; 210(5-6): 263-275, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34415422

RESUMO

A versatile portfolio of diagnostic tests is essential for the containment of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic. Besides nucleic acid-based test systems and point-of-care (POCT) antigen (Ag) tests, quantitative, laboratory-based nucleocapsid Ag tests for SARS-CoV-2 have recently been launched. Here, we evaluated four commercial Ag tests on automated platforms and one POCT to detect SARS-CoV-2. We evaluated PCR-positive (n = 107) and PCR-negative (n = 303) respiratory swabs from asymptomatic and symptomatic patients at the end of the second pandemic wave in Germany (February-March 2021) as well as clinical isolates EU1 (B.1.117), variant of concern (VOC) Alpha (B.1.1.7) or Beta (B.1.351), which had been expanded in a biosafety level 3 laboratory. The specificities of automated SARS-CoV-2 Ag tests ranged between 97.0 and 99.7% (Lumipulse G SARS-CoV-2 Ag (Fujirebio): 97.03%, Elecsys SARS-CoV-2 Ag (Roche Diagnostics): 97.69%; LIAISON® SARS-CoV-2 Ag (Diasorin) and SARS-CoV-2 Ag ELISA (Euroimmun): 99.67%). In this study cohort of hospitalized patients, the clinical sensitivities of tests were low, ranging from 17.76 to 52.34%, and analytical sensitivities ranged from 420,000 to 25,000,000 Geq/ml. In comparison, the detection limit of the Roche Rapid Ag Test (RAT) was 9,300,000 Geq/ml, detecting 23.58% of respiratory samples. Receiver-operating-characteristics (ROCs) and Youden's index analyses were performed to further characterize the assays' overall performance and determine optimal assay cutoffs for sensitivity and specificity. VOCs carrying up to four amino acid mutations in nucleocapsid were detected by all five assays with characteristics comparable to non-VOCs. In summary, automated, quantitative SARS-CoV-2 Ag tests show variable performance and are not necessarily superior to a standard POCT. The efficacy of any alternative testing strategies to complement nucleic acid-based assays must be carefully evaluated by independent laboratories prior to widespread implementation.


Assuntos
Antígenos Virais/análise , Teste Sorológico para COVID-19/métodos , COVID-19/virologia , SARS-CoV-2/isolamento & purificação , Antígenos Virais/imunologia , Automação/economia , Automação/métodos , COVID-19/diagnóstico , Teste Sorológico para COVID-19/economia , Estudos de Coortes , Reações Falso-Negativas , Alemanha , Humanos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Sensibilidade e Especificidade
16.
J Am Assoc Lab Anim Sci ; 60(4): 451-461, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34034857

RESUMO

Pathogenesis of viruses or other agents that are infectious to humans is frequently studied in vivo using natural or genetically modified animals. Depending on the risk group of the pathogen, the majority of such experimental studies are performed at least under biosafety level 2 (BSL-2) conditions. Biosafety considerations are therefore critical at all steps of research involving potentially infectious pathogens. Inactivation of pathogens studied using in vitro experiments is usually performed using moist heat sterilization. However, few standardized and validated protocols are currently available for the thermal inactivation of carcasses from laboratory animals infected with such human pathogens. To comply with laboratory biologic safety rules and requirements imposed by regulatory authorities, documentation of appropriate inactivation conditions or use of a validated procedure according to national or international standards is critical. In the current study, we evaluated inactivation protocols in a standard laboratory autoclave for carcasses of either frozen mice or recently terminated rabbits, which were placed inside autoclave bags with bedding material in stainless steel containers. Temperature sensors were placed into different tissues of the carcasses to continuously record temperature in situ and in real-time, and a reference sensor was placed in the autoclave. To achieve pathogen inactivation, autoclaving protocols had to be optimized for both species. Frozen mice required 2 different fractionated prevacuum stages, whereas recently terminated rabbits required 3 different fractionated prevacuum stages. This study provides a template for an evaluation procedure to safely and effectively inactivate mice and rabbits infected with risk group 2 to 4 pathogens.


Assuntos
Temperatura Alta , Esterilização , Animais , Cadáver , Contenção de Riscos Biológicos , Camundongos , Coelhos , Temperatura
17.
Animals (Basel) ; 11(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915697

RESUMO

The major responsibility of researchers and laboratory animal facilities is to ensure animal well-being during the time of acclimatization, experiments, and recovery. In this context, animal housing conditions are of utmost importance. Here, we implemented a mobile and modular floor-pen housing system for laboratory rabbits that combines rabbits' natural behavioral requirements and the high hygiene standards needed in biomedical science. Twelve female New Zealand White (NZW) rabbits were single- or group-housed for 12 months in mobile and modular floor-pens. Their general health status was evaluated at the end of the experimental setup. Further, we performed behavioral analysis of six additional NZW females group-housed for eight weeks in pens of two different sizes. We show that our improved housing concept supported species-specific behavioral patterns. Taken together, our housing system provides an optimal setup for rabbits in animal facilities that combines strict requirements for animal experiments with animal welfare.

18.
Mol Immunol ; 132: 79-81, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33550067

RESUMO

Guanylate binding proteins (GBPs) are major players in the host immunity, providing defense against bacterial and viral invaders. Multigene families may suffer different processes of evolution. Gene families related to the immune system usually follow the birth-and-death evolution process, where duplicated genes can be deleted, gain new functions or become non-functional. We analyzed publicly available primate GBP sequences and their genomic organization and observed that GBP7 genes appear to have emerged from a duplication of GBP4 and seem to be only present in primates. Furthermore, GBP3 genes are only present in Simiiformes and probably originated from GBP1 genes. Finally, a duplication event occurred in the GBP6 in Tarsiiformes and became functional which might also explain the duplication of GBP6 in New World monkeys and Cercopithecidae. Taken together, this study provides new knowledge on the evolution of GBPs in primates and suggests that a revision of the GBPs nomenclature is necessary.


Assuntos
Proteínas de Ligação ao GTP/classificação , Proteínas de Ligação ao GTP/genética , Imunidade Inata/genética , Primatas/genética , Animais , Cercopithecidae/genética , Bases de Dados Genéticas , Evolução Molecular , Duplicação Gênica , Família Multigênica , Filogenia , Platirrinos/genética , Tarsii/genética
19.
Med Microbiol Immunol ; 210(1): 65-72, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33452927

RESUMO

Successful containment strategies for the SARS-CoV-2 pandemic will depend on reliable diagnostic assays. Point-of-care antigen tests (POCT) may provide an alternative to time-consuming PCR tests to rapidly screen for acute infections on site. Here, we evaluated two SARS-CoV-2 antigen tests: the STANDARD™ F COVID-19 Ag FIA (FIA) and the SARS-CoV-2 Rapid Antigen Test (RAT). For diagnostic assessment, we used a large set of PCR-positive and PCR-negative respiratory swabs from asymptomatic and symptomatic patients and health care workers in the setting of two University Hospitals in Munich, Germany, i.e. emergency rooms, patient care units or employee test centers. For FIA, overall clinical sensitivity and specificity were 45.4% (n = 381) and 97.8% (n = 360), respectively, and for RAT, 50.3% (n = 445) and 97.7% (n = 386), respectively. For primary diagnosis of asymptomatic and symptomatic individuals, diagnostic sensitivities were 60.9% (FIA) (n = 189) and 64.5% (RAT) (n = 256). This questions these tests' utility for the reliable detection of acute SARS-CoV-2-infected individuals, in particular in high-risk settings. We support the proposal that convincing high-quality outcome data on the impact of false-negative and false-positive antigen test results need to be obtained in a POCT setting. Moreover, the efficacy of alternative testing strategies to complement PCR assays must be evaluated by independent laboratories, prior to widespread implementation in national and international test strategies.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/imunologia , Adulto , Antígenos Virais/sangue , Criança , Pré-Escolar , Reações Falso-Negativas , Reações Falso-Positivas , Alemanha , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade
20.
Leukemia ; 35(2): 299-311, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33122849

RESUMO

The effective treatment of acute myeloid leukemia (AML) is very challenging. Due to the immense heterogeneity of this disease, treating it using a "one size fits all" approach is ineffective and only benefits a subset of patients. Instead, there is a shift towards more personalized treatment based on the patients' genomic signature. This shift has facilitated the increased revelation of novel insights into pathways that lead to the survival and propagation of AML cells. These AML survival pathways are involved in drug resistance, evasion of the immune system, reprogramming metabolism, and impairing differentiation. In addition, based on the reports of enhanced clinical efficiencies when combining drugs or treatments, deeper investigation into possible pathways, which can be targeted together to increase treatment response in a wider group of patients, is warranted. In this review, not only is a comprehensive summary of targets involved in these pathways provided, but also insights into the potential of targeting these molecules in combination therapy will be discussed.


Assuntos
Leucemia Mieloide Aguda/terapia , Transdução de Sinais , Animais , Terapia Combinada , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...